AD=A110 004 INTERNETRXCS INC  CAMBRIDOE MA

92
ADA ITTEGRAYED ENVIRONMENT I COMPUTER PROGRAM DtVELOPH!NT SPECI--ETC(U)
DEC 8 0

F30602-80
UNCLASSIFIED RADC~TR=81+358-VOL~6




‘
T

L
Eo

==
= fIs
EEE
EEEE

2
3
Ex

=
o
=
f=
R

s

i
r ; MICROCOPY RESOLUTION TEST CHART
| NATIONAL BUREAU OF STANDARDS-1963-Ay

B
EEEE




PHOTOGRAPH THIS SHEET
&
<< 5 LEVEL +«me{'m's ,Inc. ' RY
S E Ombodie, M4
, - % a])ﬂ D\W‘f«! Enviwom 1’1‘\;‘\' T G«fu“-or
| = [ w Dedelipment Specifir Intenw Ret
<! DOCUMENT IDENTIFICATION /s 315:; Mor £7
=y E -
ey
§ <! DISTRIBUTION STATEMENT A
Approved for public
2 Distribution umm‘:‘::a“
DISTRIBUTION STATEMENT
=
| s R
~ ) DTIC
| UNANNO O ELECTE ,
; JUSTIFICATION )
JAN 25 1982 &
BY D
5 R ATASIEIrY CODES
- DIST  [AVAIL AND/OR SPECIAL DATE ACCESSIONED
DISTRIBUTION STAMP mffc'v'»
‘i 82 01 12 013
: DATE RECEIVED IN DTIC
PHOTOGRAPH THIS SHEET AND RETURN TO DTIC-DDA-2
oTIC o™ 70A DOCUMENT PROCESSING SHEET




-

DISCLAIMER NOTICE

THIS DOCUMENT IS BEST QUALITY
PRACTICABLE. THE COPY FURNISHED
TO DTIC CONTAINED A SIGNIFICANT
NUMBER OF PAGES WHICH DO NOT
REPRODUCE LEGIBLY.




RADC-TR-81-338, Vol Vi (of seven)

interim Report
Decomber 1981

ADA INTEGRATED ENVIRONMENT |
COMPUTER PROGRAM DEVELOPMENT
PECIFICATION

intermetrics, Inc.
I

ADA110004

[ APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNUMITED |

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Air Force Base, New York 13441




i
)
1
[l
{
i

This document was produced under Contract F30602-80-C-0291 for the
Rome Air Development Center. Mr. Don Roberts is the COTR for the Air Force.
Dr. Fred H. Martin is Project Manager for Intermetrics.

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign natioms.

RADC-TR-81-358, Volume VI (of seven) has been reviewed and is approved
for publication.

APPROVED: Q},.,,t;(j/{?é{

DONALD F. ROBERTS
Project Engineer

APPROVED: W_“&

JOHN J. MARCINIAK, Colonel, USAF
Chief, Command and Control Division

FOR THE COMMANDER: ‘p /:

JOHN P. HUSS
Acting Chief, Plans Office

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COES) Griffiss AFB NY 13441, This will assist us in
maintaining a current mailing list.

Do not return copies of this repcrt unless contractual obligations or notices
on a specific document requires that it be returned.




e

i

X

or Wy . e

UNCLASSIFIED

SECUMTY CLASIPICATION OF THIS PAGR (When Deta Enteredd

REPORT DOCUMENTATION PAGE

" TNUM 7. GOVY ACCESSION NG| 1. RECIMIENT'S CATALOG NUMBER |
RADC-TR-81-358, Vol VI (of seven

READ INSTRUCTIONS
BEFORE COMPLETING FORM

6. TITLE (and Subtitie)

PROGRAM DEVELOPMENT SPECIFICATION

ADA INTEGRATED ENVIRONMENT I COMPUTER

S. TYPE QF REPORT & PERIOD COVERED
Intetg.n Report

15 Sep 80 -~ 15 Mar 81
N/A

Y. AuTwON(s)

3. PERFORMING ORGANIZATION NAME AND ACORESS

NUM! 8)

F30602-80-C~0291

Intermetrics, Inc.
733 Concord Avenue
Cambridge MA 02138

’ AEA A%E ORIT NuMaERS
62204F/33126F
55811908

[ ———————————————————————
€. PERFOMUNG O1G. REPORT NUMBER

11, CONTROLLING GQFFICE NAME ANO ADODRESS

Rome Air Development Center (COES)
Griffiss AFB NY 13441

[ NG AGENCY NAM AQOR o from

Same

e Eﬂﬁﬁ Fiow l'A?E’lT (of this Repert)

2. REPORT OATE
December 1981

3 NUMBER OF PAGES

ling Olfee) 8. SECURITY CLASS. (ol Wie copont)

UNCLASSIFIED

W{E‘m

Approved for public release; distribution unlimited.

Same

7. OISTRIBUTION STATEMENT (of the sbetract entered in Bleek 20, il ditferent hem Repert)

B T Yy T e ST —y—
15. SUPPLEMENTARY NOTES

RADC Project Engineer: Donald F. Roberts (COES)

Subcontractor is Massachusetts Computer Assoc.

- ABETRACTY r! - sdo it

. o wOROS - aide it y and identily by boek number)
MAPSE AIE
Compiler Kernel Integrated environment
Database Debugger Editor
KAPSE APSE

computers).
(mn) .

DD %' 473  coimion oF 1 wov o3 13 ossoLETR

and idontily by Mosk mamber)

The Ada Integrated Environment (AIE) consists of a set of software tools
intended to support design, development and maintenance of embedded
computer software. A significant portion of an AIE includes software
systems and tools residing and executing on a host computer (or set of
This set is known as an Ada Programming Support Environment
This B-5 Specification describes, in detail, the design for a

minimal APSE, called a MAPSE. The MAPSE is the foundation upon which an

UNCLASSIFIED
SRCURITY CLASBIFICATION OF THIE PAGE (When Bete Bniered




UNCLASSIFIED
SECUMTY CLASHIFICATION OF THiS PAGE(Whan Date Enteored)

'
|
i
L]
;

APSE 1is built and will provide comprehensive support throughout the
design, development and maintenance of Ada software. The MAPSE tools
described in this specification include an Ada compiler, linker/loader,
debugger, editor, and configuration management tools. The kernel (KAPSE)
will provide the interfaces (user, host, tool), database support, and
facilities for executing Ada programs (runtime support system).

———ne

UNCLASSIFIED
SRCURTY CLASHFICATION OF Tu'® PAGE(When Dats Entered)

i,




1.0

SCOPE

l.1 Identification

TABLE OF CONTENTS

1.2 Functional Summary

APPLICABLE DOCUMENTS

2.1 Government Documents
2.2 Non-=-Government Documents

REQUIREMENTS

3.1 Program Definition
3.2 Detailed Functional Requirements

3.2.1 Parameters
3.2.2 Inputs
3.2.2.1 General Information
3.2.,2.2 Breakpoint Commands
3.2.2.3 Execution Control Commands
3.2.2.4 Information Commands
3.2.2.5 Debug Control Commands
3.2,3 Outputs
3.2.4 Processing
3.2.4.1 Command Processing/MAPSE Command
Processor Interface
3.2.4.2 Debug/Compiler Interface
3.2.4.3 Debug/RTS-KAPSE Interface
3.2.4.4 Debug/Internal Data Base Inter-
face
3.2.4.5 Debug/Program Library Access
Package
3.2.4.6 Breakpoint Command Procedures
3.2.4.7 Execution Control Command Proce-
dures
3.2.4.8 Information Command Procedures
3.2,4.9 Debug Control Command Procedures
3.2.4.10 Utility Procedures

PAGE

it A ¥




. e e o e

PAGE
3.3 Adaptation 32
i 3.3.1 Debug Size Restrictions 32
| 3.3.2 Debug Extensions 32
: 3.3.3 Run-Time System Parameters 32
4,0 QUALITY ASSURANCE PROVISIONS 33
LIST OF FIGURES
FIGURE 3-1: Sample Debugging Session 8 :
FIGURE 3-2: Debug Procedures and Interfaces 20

TABLE OF CONTENTS (Cont'‘'d.)

&

G i o el AR T NN e

ii




[

}

3]

1.0 SCOPE

This specification describes the MAPSE debugging facilities.
It includes descriptions of: (1) the user debugging language;
(2) the DEBUG computer program that serves as an interface between
the user and these facilities; and (3) the interface between DEBUG
and other MAPSE components, through which debugging tasks are
performed.

1.1 1Identification

The MAPSE debugging facilities support full source level
debugging of Ada programs. These facilities draw upon several
components of other MAPSE tools. Use of these components for
debugging purposes is coordinated by the MAPSE tool, Debug. Debug
accepts and interprets user input commands and causes the specified
actions to be performed, calling upon other tools, as needed.

This document contains specifications for the Debug command
syntax and semantics; specifications describing how the Debug
commands are effected; and specifications of the debugging support
functions provided by other MAPSE components. The MAPSE components
that provide explicit support for the MAPSE debugging facilities
include:

l. an interactive debugger (Debug) that allows the user to
manipulate an executing program;

2. the Ada Compiler;
3. the MAPSE Linkage Editor;
4, the Ada Program Run Time System (RTS);

5. the KAPSE, for supporting the Debug interface with the RTS;
and

6. The MAPSE Command Processor (MCP).
Tools other than Debug are described in detail in separate B-5

specifications, although some of their requirements are specified
here,

1.2 Functional Summary

Debug itself is a command language interpreter. It accepts, as
input, commands from the user, interprets them, and then performs
the actions requested. Most often, user commands establish
information in a small data base maintained by Degug, display
information about the executing user program, or control its
execution, The user can, among other things, display trace
information, display and modify the values of variables in the user
program, change the execution flow in the program, and establish




breakpoints at which program execution can be interrupted. Commands
can be issued interactively or can be stored in text files that
serve as command scripts to Debug.

The Debug support functions within MAPSE components provide
Degug with information about the program being debugged and provide
i Debug with the basic elements of execution control over the program.
‘ All of these other MAPSE components provide their portion of the
Debug support automatically, so that the Debug tool itself is the
primary user interface with the MAPSE debugging facilities.

NR Ve e




s SRR T T

7 SRR ﬁ‘W

2.0 APPLICABLE DOCUMENTS

Please note that the bracketed number preceding the document
identification is used for reference purposes within the text of
this document.

2.1 Government Documents

2.2 Non-Government Documents

[I-1] sSystem Specification for Ada Integrated Environment, Type A,
Intermetrics, Inc., March 1981, IR-676.

Computer Program Development Specifications for Ada Integrated
Environment (Type BS):

[I-2] Ada Compiler Phases, IR-677

[I-3] KAPSE/Database, IR-678

[I-4) MAPSE Command Processor, IR-679

[I-5) MAPSE Generation and Support, IR-680
[I-6] Program Integration Facilities, IR-681
[I-7] MAPSE Text Editor, IR-683

[1-8) Technical Report (Interim), IR-684

3/4

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE  CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1840

-




3.0 REQUIREMENTS

Debug is an interactive MAPSE tool that allows a user to
control an executing program and examine its state. To do this,
Debug requires support from a variety of MAPSE components. These
requirements are fully specified in later sections of this
document.

Debug requires no peripheral equipment other than the terminal
or file that represents an input script. 1In addition, a terminal or
set of files are required to record the debugger output.

The peripheral programs required by Debug are only summarized
here. They are handled in detail in Section 3.2.

Debug needs to identify the user program being debugged. This
is specified by the user when he invokes Debug from the MCP or from
some other tool., See Section 3.2.1.

Debug needs access to the Program Library for the program being
debugged. This library contains information required by Debug, such
as symbol-definition information, addresses of program entities, and
cross listings. The information in this library is created by the

Ada Compiler and the Link Editor, See sections 3.2.4.2
(Debug/Compiler Interface) and 3.2.4.5 (Debug/Program Library
Access).

Debug requirements of the Ada Run Time System and KAPSE are
described in section 3.2.4.3 (Debug RTS/KAPSE Interface).

3.1 Program Definition

The Debug program is composed of several different components,
as summarized below.

There is a Debug command processor; it is derived from the
MAPSE Command Processor, with the addition of specific verbs to
implement specific debugging functions.

There is a set of procedures that implement the specific
commands, generally one procedure per command.

There is also a set of utility procedures to parse Ada names
with subscripting and qualification, analyze them in the context of
the user program, and evaluate expressions interpretively.

There are Ada packages that handle the interfaces between Debug
and the various other tools with which it interacts. These include
the Debug Support Routine in the Ada Run-Time System and the program
library access package.

Although Debug does not have a direct executable interface with
the Compiler, it does require Compiler support. This functionality
is described in Section 3.2.4.2 (Debug/Compiler Interface).




LY. T

To maintain information concerning which breakpoints are active
and to keep stored user commands, Debug has an internal data base.
This is implemented as an abstract data type via an Ada package
specification.

3.2 Detailed Functional Requirements

Section 3.2.1 describes the set of parameters that must be
supplied to Debug when it is invoked.

Section 3,2.2 describes the additional commands provided by
the Debug Command Processor and shows, by examples, how to use the
Debug commands within the MAPSE Command Processor to perform tasks
such as installation of conditional breakpoints.

Section 3.2.3 summarizes the outputs of Debuqg.

Section 3.2.4 describes the various modules and interfaces
that Debug uses to effect the Debug-specific commands. These
include the Debug Command Processor itself, the execution procedures
it calls to do the actual work, the interface with the Ada Compiler,
the interface with the Ada Run-Time System through the KAPSE, the
interface with the Program Library Access Package, and Debug's own
internal data base. The interfaces are specified in terms of
requirements that Debug imposes upon the other MAPSE components in
order to provide the specified funtionality.

3.2.1 Parameters

[I-4] describes how the user can invoke a MAPSE tool from the
MCP. Debug 1is a MAPSE tool, invoked with four parameters. The
first two, respectively, specify the source from which Debug
commands are input, and the source to which output is to be
directed. Normally, these are the standard input and standard
output devices, namely the user's terminal. In the case that Debug
is being run in the background, these are a script of Debug commands
and a file to write output to; the MCP interface handles 1/0
direction.

The third parameter to Debug specifies which program the
debugger is to control. This argument is a window on the context of
the user program. See [I-3] for a description of "window" and
"context". The fourth parameter is an ASCII string containing the
parameters to be passed to the user program being debugged when it
started. If the user program has already started when Debug is
called, this fourth parameter is ignored.

INTERMETRICS INCORPORATED ¢ 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 081-1840




s e g . -

3.2.2 Inputs

The Debug command language includes as a subset the entire MCP
: command language. The extension is in the form of Debug~specific
commands which generally have a verb-object structure. The
following subsections present a brief description of the form and
function of each Debug-specific command. Later sections provide a
more detailed discussion of the effect of each command and the
specification of how it will be implemented.

Since the Debug command language is an extension of the MCP
command language, the following subsections distinguish between MCP
functions and Debug-specific commands. Any to MCP variables or
commands, in fact, refer to the MCP functions contained within the
Debug Command Processor., Figure 3-1 is a sample debugging session.

3.2.2.1 General Information

(a) Breakpoint Locations. A breakpoint represents a place in a
program where execution has been suspended to allow the user to
> examine various aspects of the program, Usually, this place is
before a statement or elaboration item. (In the case of highly
optimized modules this may not be the case, see Section 3.2.4.2).
For the purposes of the debugging environment, each declaration in
the user program 1is also considered a statement, This means that
b the user can establish breakpoints between declarations. This

; reflects the Ada language rule concerning the order of elaboration
of declarations,

User commands to Debug can be seen as executing at the specific
point that the user program is halted. Thus, alterations to the
flow of the user program by Debug commands occur before executing
the next statement or elaboration item after the breakpoint,

" (b) Scopes. Each statement or elaboration item is contained within

e some scope in an Ada program, and Debug preserves this viewpoint for
4 the user. This means that all variables visible in the current
scope where the program is halted are also visible to the user. (At
a breakpoint in the middle of a declarations section, only some of
the declarations have been elaborated, so the user is restricted to
by Ada elaboration order rules when issuing Debug commands.) Other
variables in other scopes are available via normal Ada name
qualification. Debug also provides commands to alter the scope that
the user sees while at a breakpoint.

(c) Command Overview. There are four classes of user commands:
(1) breakpoint commands; (2) execution control commands; (3)
information commands; and (4) Debug control commands.

Breakpoint commands allow the user to set, remove, suspend and
restore various breakpoints and breakpoint actions.

Execution control commands allow the user to stop, start,
and modify the execution of his program.

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE » CAMBRIDGE, MASSACHUSETTS 02138 « (617) 661-1840




INTERMETRICS INCORPORATED « 733 CONCORD AVENUE »

== In this exasrler Debus outrut ts in usser cases user
== 3nPut 1S 1N lower case.

== Firsty the user instructs the MCP to run Debus on »
=~ sroursm 1n his library specifiing marsmetars for the
- wpqctfic srosraa.

.

i debug irosrams: flight_controly sarseeters s>
‘wvhich.vehicle => F18, sodel > exrersentl23*

-= Tha debusser srints out informstion sbout the
~= Jepusder version nusberr and the nurrent rrosras
~= context.

HAPSE DFBUG VERSION 1.0 4-FEB-81
LCOPE 1S MAIN_SROGRAM BEFORE STATEMENT 1
~- rtiow Debus rroerts the user for comsands.

-- The user instructs Debus to read in 2 file of
== coasdnds to set. some breskroints in his srogram, -
-= This file has been rre-srepsred by the user
-= and erohably resresents the cyrrent state of his
= work.

t read .currént.flisht_control.sreset-breskroints

== Thst dones the yser starts o» his srosram.
]
¥ zroceed

-= Yarious user-rrograe intersctions occur until 8
~= breskroint i1n the user sroseas in encountered.

EREAXFOINT ENCOUNTERED.
3COPE 12 SAIN PROGRAM,CONTROLS.AI! FRON.CONTROLS
JEFNRE STATEMENT 23

~= The user uants to know sore sbout how the srosres
-- sot ta this seecific point in his srosrase.

)

¥ cacktrace

AN PROGRAM STATEMENT 45 CALLED CONTROLS
UTTH YHICM_CONTRCL = AILFRONs MOVFNENT <> UP

TOITROLS STATEMENT S4 CALLED AILERON.CONTROL
4I7H WHICH AILFRON => LEFT, DIRECTION => UP

AILFROM CINTROL STATEMEWT 33 CALLED LEFT_AILEROM
JITH DIRECTION = tP

-= The user wants ¢o see the values of some variables
== in his eprogras 1n the cuyrront context. The first
-- variadble 1s one element of an arrav of records,
== the tocond 13 3 string tn an enclosing score.

1]

t s:3mles sileron_table(left)r controls.sileron.nsne

ALLERON _TARLF (1EFT) =
FLAF_POSH + UP
GNOLE = 42.78
TERSION = 9%

CONTROLZ L ATLERQN.HANE = *Aileron RO-AZ"

FIGURE 3-1: sSample Debugging Session

m e — et o

CAMBRIDGE, MASSACHUSETTS 02138 « {617) 681-1840




’ ° . —— - - J S e T P a3 et e o e A

~= The user sets 3 breskroint with stored cosmands st \

-~ every location that the vartable ‘waster_switch® !

-- aight be scdificd» and thon erocewds. ‘
I}
t Lrap modify dileron control.easter.switch besin :
1/ dissloy master_switch .
2/ set saster_switch = off !
3/ rreceed )
4/ end
»roceed

-

MASTER .SWITCH = ON
| MASTFR_SWITCH = OFF
MASTER.SUTTCH = N

FREANFOTNT ENCCUNTERED.
SCOPE 1S MAIN. PROGRAM.CONTROLS.AUL FRON.CONTROLS
RETORE STATEMEMT 24

The user reslizes he wants a different set
-~ af cosmends at the same Dresksoint. He asks
-~ for a list of breakroints to check that he has
== 3ll that he wants» then resoves this latest
-- breskroint by using the breskroint 1dentifiers
== and inserts a now one, He then instructs
-~ Nebus to transfer to & eragras label. ,

&

& what trae N

‘CONTROL _POINT®>+ TRAP BEFORE STHT
MAIN _PROGRAM,CONTROLS. A1 FRON_CONTROLS. 24
3 CRKPY_21: TRAP MODIFY AILERON_CONTROL.MASTER SWITCH BESIN
| 1/ DISPLAY MASTFR.SWITCH
. 2/ SEY HASTER_SWITCH := OFF
3/ PROCFFD
) 4/ END

| « remove bxet 21
2 nodifs ai1leron.control.saster.switch besin
1/ whst score
2/ diselaw asster_suitch
3/ s2¢t master_switch = off
3/ sroceed
' S/ ond
¢ soto label calculate_aileron

1 SCOPE IS MAIN. PROGRAN.CONTROLS.WING_TIP_LFFT

REFCRE STATENENT 14

h ! HASTER.SWITCH = ON

‘ COPE 13 MAIN.PROGRAM.COHTROLS.AILERON. CONTROLS

PEFORF STATEMENT 14

MASTER.SWITCH = OM

3COPE IS MAIN_PROGRAN.CONTROLS.AILERON.CONTROLS, MOVE.UP
BEFORF STATEMFNT 46

MASTER.SWITCH = OFF

-= The user is closing up for the dsvwr and ssves
=~ his current bresksoint set, and auils,

ant

z
1 tave rreset_breskeoints
[
: losout

t

FIGURE 3-1: Sample Debugging Session (Con't.)

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 681-1840




PRI 1 A O e

Information commands allow the user to inspect the state of his
program by examining the values of variables, the current location
of execution and the history of execution (call chain, task
scheduling, rendezvous, jump flow).

Debug control commands are used to leave the debugger, read in
command files, and redirect output.

(d) Language Overview. The user may specify any legal Ada variable
in normal Ada syntax for Debug DISPLAY and SET commands. This
includes access dereferencing, array subscripting and record
component selection. Ambiguous names may be qualified using normal
Ada syntax as well, The expressions used as array subscripts may
not include function calls. 1In addition, operators are not resolved
to any overloaded definition.

All lists of identifiers are separated by commas,. These
include variable names, statement identifiers and exception names.

Debug commands are terminated by semicolon or newline. The
stored command part of breakpoint commands is terminated only by the
matching "end".

Statement identifiers and scope identifiers are specified using
a simple extension to Ada name qualification. Statements are
referred to by suffixing their procedure name by a dot followed by
the sequential statement number relative to the start of the
procedure., This 1is the same statement number used by the Ada
Compiler listing option. To avoid using statement numbers in Debug
commands, a user can put Ada labels on those statements and use the
LABEL option of the TRAP and GOTO Debug commands.

A procedure is referred to by name, unless it 1is overloaded.
In that case, it is referred to by its qualified name, followed by a
number sign (#) and the sequential specification number of the
desired procedure. This number appears in the compiler listing.
That is, given five procedures P in the current scope, P#3 refers to
the third specification for P. This number appears in the program
listing. For the purposes of the debugger, procedure specifications
count as definitions of procedures, so if the program contains a
specification for P and then a body for P, P#2 must be specified
when referring to the body of P, In the case that this form is used
to refer to a statement within an overloaded procedure, the
specification used must be the procedure body specification, and not
its interface or stub specification. This results in a name
followed by 'number sign' <integer> 'dot' <integer>. When the user
wants to put a breakpoint at a statement in the current scope, no
procedure name qualifier is necessary.

10

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 681-1840




T

Examples:

BREAK BEFORE 5 -- gets breakpoint before statement 5
-- of current scope

BREAK BEFORE proc®4.10 -- set trap before tenth statement of
~-=- fourth definition of proc in
-- the current scope

BREAK before prog.25 -- trap before twenty-fifth statement
-~ in scope "prog"”

SCOPE TO prog.proc -- change scope to inside
~-- procedure "proc" inside scope
-—-— llprog L}

(e) Expressions and Variables. The MAPSE Command Language allows
variables 1n all expressions. These variables are always MCP
variables, and are prefixed by a percent sign (%). The Debug
Command Processor recognizes user program variables in only a few
contexts., In general, all expressions and variables are MCP
expressions and variables. Only the SET, TRAP MODIFY, PGM RETURN
and DISPLAY commands recognize user variables. That is, the
variables in the expressions in these statements must all be

variables in the wuser program. The only exception 1is the
destination variable of the SET command. It can be an MCP variable.
(See the SET command, Section 3.2.2.3.) This provides the

capability of writing Debug scripts that test the values of
expressions and variables in the user program.

(f) Notation Conventions. The following command descriptions use
the notation ‘conventions: square brackets [] surround options;
parentheses () surround optional words that help convey the meaning
of the command; angle brackets <> surround higher-ievel constructs

11

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 6611840

.- L e AN W W 1

3
ol
i
i




t

3.2.2,2 Breakpoint Commands

Breakpoint commands establish breakpoints in the user program,
No other action is taken,

Following is a summary of the breakpoint commands. Each
keyword given below may be prefixed by the word TRAP or BREAK.

AFTER (STMT) <list of statement identifiers>

-— break after the specified
~~- statements

BEFORE (STMT) <list of statement identifiers>
-- break before the specified
-= gtatements

LABEL <list of label identifiers>
-- break at specified labels

EVERY <number of statements>

~- break after every "n"
-=- statements

MODIFY (OF) <list of variables>
-- break after each statement
-- that modifies the specified
-- variables

EXCEPTIONS <list of exceptions>

-- break on raise of these
-~ exceptions

ALL_EXCEPTIONS -= break on raise of all

1 ~- exceptions

UNHANDLED_EXCEPTIONS -- break only on unhandled
-- exceptions

INVOKE (SUBPROGRAM) -~ break on entry to all
-=- gsubprograms and entries

EXIT (SUBPROGRAM) -= break on exit from all
-- gsubprograms and entries

12

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 081-1840

£ LI A A

e ]

3




Following are the breakpoint modification commands.

DEACTIVATE <list of breakpoint identifiers>
-- suspends action of breakpoint

REACTIVATE <list of breakpoint identifiers>
-=- restores action of breakpoint

REMOVE <list of breakpoint identifiers>
-- removes and forgets the
-~ gpecified breakpoints.

Commands that set breakpoints may be prefixed by an identifier
within the Ada << and >> markers. This syntax indicates that the
breakpoint can be referred to by the specific name enclosed within
the brackets. The name serves as an abbreviation for all
breakpoints specified by the command. The identifier must be a
reqular Ada identifier.

All breakpoints must have names; those not named by the user
are given a wunique name by Debug. If the user specifies a
breakpoint command with a breakpoint identifier already in use, the
name on the new breakpoint command is replaced by a Debug-generated
name, and a warning message issued. Debug-generated breakpoint
names are constructed by concatenating the string form of an integer
with the letters "bkpt_". (Examples: bkpt_l, bkpt 465.)

Breakpoint commands may contain a sequence of Debug commands.
These commands are executed when the breakpoint is encountered in
the flow of the user program. After the commands have been
executed, the user program execution is resumed at the point at
which it was interrupted. If no sequence of commands is specified,
the program execution is halted and the user is allowed to give
Debug commands interactively. The PROCEED command may be one of the
stored commands., In this case, the program will not be suspended
for interactive debugging at the breakpoint.

These stored commands are specified by the keyword BEGIN
following the breakpoint command on the same line. The stored
commands may then be typed, one per Iine or separated by semicolons
as 1in the MAPSE Command Language. The BEGIN is terminated by the
matching occurrence of the keyword END. A stored command sequence
can contain nested BEGIN-END blocks.

Breakpoints can be removed by use of the REMOVE command, The
breakpoint and its stored actions can be suspended by use of the
DEACTIVATE command. The REACTIVATE command restores the actions of
a breakpoint that has been DEACTIVATEA. These three commands can be
followed by a breakpoint identifier list, Thus entire groups of
identifiers can be manipulated. The keyword ALL is permitted as a
breakpoint identifier and specifies all breakpoints in the user
program,

g




RS g
Ha,
L

ol

W

ﬁq‘ {
'
’

A second form of the REMOVE, DEACTIVATE and REACTIVATE commands
is supplied to permit finer control over breakpoint insertion and
deletion. Each of the breakpoint commands may be preceded by any of
the three keywords of the breakpoint modification commands. For
example:

TR PR W s

wae

REMOVE TRAP BEFORE CALC_SINE.24
DEACTIVATE MODIFY MASTER_SWITCH

Only the specified breakpoints are affected. These breakpoint
commands following the modification keyword may not include the list
of stored commands. (No BEGIN keyword is permitted at the end of
the breakpoint modification command,)

The stored commands for a breakpoint provide the Debug user
with conditional breakpointz. For example:

*
* TRAP BEFORE STMT ¢ ... GIN

1/ SET $M_S := M:STs.. SWITCH

2/ IF $M_S = ON THEN
kYA PROCEED
4/ ENDIF

This breakpoint command sets a breakpoint at statement 26 of the
current scope. When that statement is encountered, the value of the
program variable MASTER SWITCH is fetched and stored in the MCP
variable $M_S. The MCP variable is tested and, if found equal to
: the string "ON", causes the breakpoint to return control to the
; executing user program. Any other value of $M S causes control to
be automatically returned to the debug command processor. See the
next section for an explanation of the SET and PROCEED commands.

Breakpoints installed in task bodies cause the breakpoint to
occur at the specified point for all instances of the task. This
implies that the breakpoint occurs in the next task instance that
encounters the breakpoint. To have a breakpoint occur for a
specific instance of a task, the Debug use can user the conditional
breakpoint commands and SET command to fetch information from the
program and check for the correct instanceof the task.

14

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 » (817) 681-1840




3.2.,2.3 Execution Control Commands

Following is a list of Execution Control Commands.

SET <variable> := <expression> -- modify value of
-=- gpecified variable

PGM_GOTO STMT <statement identifier>

-- transfer of control

PGM_GOTO LABEL <label identifier>
-~ transfer of control

PGM_RETURN [ <expression> ]
-=- return from subprogram

RAISE [ <exception identifier> ] -~ raise exception

PROCEED [ <integer> ] -~ return control to
-- executing program

STEP [ <number of statements> ] ~-=- go "n" statements one
-- at a time

Each command has an immediate effect. All but the SET command
cause control to immediately return to the user program in the
manner specified, thus closing the breakpoint, Control only returns
to the Debug Command Processor when another breakpoint in the user
program is encountered, or when the user hits the "interrupt” key.

The expression in the SET command follows the same rules as Ada
expressions except that no user subprograms may be invoked. The
implication of this is that overloaded operators may not be used,
and no explicit function calls are allowed. In the case that the
variable specified after the set keyword is an MCP variable (with
prefix %), then the value is converted to a string and stored in the
MCP variable. Only expressions of simple type (string, Boolean,
integer, floating point, enumeral, access) are permitted when their
value 1is being assigned to an MCP variable. 1In the case that the
target of the assignment is a variable in a user program, then the
effect is the same as an assignment statement in the Ada program.
Debug permits the user to do assignment regardless of restrictions
specified by the Ada language and enforced by the Compiler. This
means that the user may assign objects of 1limited private type

within a debugging session. The only rule is that the types must
match.

=8




The integer argument to the PROCEED command 1is optional and
specifies the number of times to suspend the current breakpoint.
Control is not returned to the Debug Command Processor from the
current breakpoint until control has passed it the specified number
of times. An argument of one (1) means skip the breakpoint once,
and halt on the second occurrence. Thus the default for PROCEED is
zero (0).

The RAISE command takes an optional argument, like the Ada
language statement. It is the exception to be raised. When no
exception 1is specified, the raise handler re-raises the current
exception, The syntax for the exception name is the same as in the ;
Ada LRM. This means that the user can raise the FAILURE exception
in any task as well,

The number of statements to the STEP command is optional, and
is defaulted to one,

The PGM_GOTO LABEL command has the same effect as the Ada goto

statement; it causes program control to be transferred to the 1
specified label. The PGM_GOTO STMT command allows transfer to any
statement by statement identifier, The only checks on the PGM GOTO

3

commands are that the label or statement is in the subprogram or ) 1
({package) enclosing the current breakpoint, The user is permitted 3
to specify a GOTO that is illegal by Ada language rules.

The PGM_RETURN command has the same effect as the Ada return
statement; it causes the subprogram enclosing the current breakpoint
| to terminate, If the subprogram is a function, the PGM RETURN ’
command must be followed by an expression which becomes the return
value of the function.

The PGM_GOTO and PGM_RETURN commands are prefixed by “PGM_" to
distinguish them from commands.

! 3.2.2.4 Information Commands

Following is a list of Information Commands.
DISPLAY <list of variables> [ (IN) BASE <integer> ]

-- display value of variables
-- [in some base]

BACKTRACE [ CHAIN ] -=- show nested chain of procedure
-- calls of present breakpoint

BACKTRACE FLOW -- ghow recent flow of control
-- of transfers (goto, if, etc)

BACKTRACE TASK -- show recent task schedule and
-- rendevous history

16

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 681-1840

PRRETAN -




—

BACKTRACE ALL -- do all backtrace options

SCOPE CALLER -- change scope to caller of
-=- current scope

SCOPE ENCLOSING -=- change scope to static
-~ enclosing scope

SCOPE RESET -- reset scope to original
-- breakpoint scope

SCOPE TO <scope identifier> -- change to arbitrary new scope

WHAT SCOPE -- print out current scope
-- (affected by "scope" cmd)

WHAT TRAP -- print list of current
-- breakpoints and status of
-~ each breapoint

WHAT BREAK -- same as "what trap"

DUMP ([ ALL ] -- print all variables in
-- current scope

The base option of the DISPLAY command is an integer from two
(2) through sixteen (16) specifying the base of the numeric type
desired and applies to the display of all variables in the variable
list. When no base is supplied, the variable is printed out in its
own mode (string, integer, floating point, enumeral, etc). When the
variable is a composite object (array, record, etc) each component
is printed in its own mode, unless a base was specified. In that
case, all of the components of the variable are printed in the
specified base,

The CHAIN keyword is the default for the BACKTRACE command so
does not need to be specified.

The SCOPE commands only change the visibility of identifiers
for the Debug commands. There is no affect upon the user program.

The DUMP command is a shorthand for displaying all the
variables in the current scope. The optional keyword ALL indicates
that all scopes should be dumped. Following the DUMP command by the
MCP redirection of 1/0 operator and a file name
(ex: DUMP ALL -> prog.dump) will place this information on the
specified file rather than the user's terminal.

17

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 881-1840

N L A NP~ 2 PP R TR
DT wrat




et

3.2.2.5 Debug Control Commands

Following are the Debug Control Commands. They are directives
that control the execution of Debug rather than the user program,

SAVE (ON) <file> -- save current breakpoints on text file
BRIEF -- brief output to terminal only
VERBOSE -~ reverse effect of "brief" command
APPEND (TO) <file> [ ONLY ]

-- A copy of breakp01nt and display

-- information is appended to the given
-- file. No output to terminal when
-=- ONLY specified.

NO APPEND -~ stop outputting to file

<interrupt> -- stop the user program from executing
-- and return control to Debug

The BRIEF and VERBOSE commands shorten the prompt given the
user when the executing program reaches a breakpoint.

The APPEND command differs from the redirection of I/0 facility
in that it affects all output actions of the debugger, not just a
single command. The rationale is that a user will have a number of
breakpoints displaying trace information that he now wants output to
a file for the next piece of execution of his program. The output
is appended to the specified file, so that the user can create an
execution history on one file, rather than having to concatenate
various files after debugging. If the file did not previously
exist, it is created. The ONLY option of the output command causes
no output to the user's terminal other than a brief report when a
breakpoint is reached,

The user terminates a Debug session by using the RETURN command
[1-4] .

The SAVE command outputs a text file containing the necessary
breakpoint commands to recreate the current state of Debug's data
base. Only the breakpoints are recorded on this file, not current
execution state, scope, etc. The MCP portion of the Debug Command
Processor provides a general command file execution facility. This
is used to read in the file containing the SAVEQ breakpoints.

Example:

* SAVE PRESET_BKPTS

* EXEC CONTENTS(PRESET_BKPTS)
18

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 861-1840

-~ e g o

PRt T o R L

i -




See [I-4] for explanation of the EXEC CONTENTS facility.

3.2.3 Outputs

Debug normally prompts the user with the character sequence
asterisk, space (* ) to indicate that it is accepting commands. The
various Information Commands produce output according to their
specifications. Whenever control returns to Debug from the user
program, a report is issued summarizing the state of the user
program, The BRIEF command makes this summary shorter. When the
MCP 1I/0 re-direction facilities are wused, then various files are
Ccreated. Files are also created by the Debug Control Command,
APPEND.,

3.2.4 Processing

The following subsections describe the processing of each major
component, and provide a detailed description of the support
provided by other MAPSE components. Figure 3-2 1is an overview of
Debug procedures and interface.

3.2.4.1, Command Processing/MAPSE Command Processor Interface

The Debug Command Processor (DCP) is created by taking a copy
of the MAPSE Command Processor sources and extending them with a set
of additional commands and command execution procedures. The
changes to the MCP are all extensions, so that modifications to the
MCP can easily be reflected in the DCP. This means that the Debug
user sees the exact same functionality and syntax as when using the
MAPSE Command Processor, with extensions for debugging activities.

One extension to the MCP is to enclose the command parser and
interpreter procedures in a command control procedure, This
procedure is the top level control procedure of the DCP, and is
responsible for checking the Debug data base whenever control is
returned to it. Command_control checks to see if there are any
pending commands (stored commands for the specific . breakpoint or
EXEC command). If so it executes them; otherwise it invokes the
command parser and interpreter pair.

3.2.4.2 Debug/Compiler Interface

The Ada compiler has two user-specified parameters (not
pragmas) that affect the functionality seen by the Debug user.
These are DEBUG and OPTIMIZE.

The DEBUG parameter value of ON causes the compiler to insert
"hooks" between every statement in the object code of each module
compiled with this directive. See the next section (3.2.4.3
Debug/RTS-KAPSE Interface) for a discussion of hooks. Modules
compiled without hooks (DEBUG parameter value of OFF) do not have
the support necessary for use of statement breakpoints.

19




D e e . g g % A T R e LN A8« S L 2 o AR e PO

|
1
user [ lication pebua
b i Pepli Command

Program

‘\ i

Application Ada K Debug
Program Run Time g Data
Program System s Bage
Lilrary E
)
)
Access exe_set Access .
Procedures Procedu
trap_stmt
t
1
info_scope
.
o .
: . KEY

J . .
‘ Software entity
§ 3
‘- - -~ Infarmation flow

g Caller/callee
j - relationship
>

2128118-7

- FIGURE 3-2: Debug Procedures and Interfaces

20

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 861-1840

- ST R e e o e




B s e e Mo

The OPTIMIZE parameter has a set of options that direct the
Compiler to turn off specific sets of optimizations. The CAN_MODIFY
and OFF values of the OPTIMIZE parameter provide the user with
complete confidence that the Execution Control Commands have exactly
the effect the Debug user expects. The CAN_INSPECT value of the
OPTIMIZE parameter permits the Debug user to do only a DISPLAY of
values in his program. The Execution Control Commands are not
guaranteed to have their intended effect,

The ON value of the OPTIMIZE parameter permits the Compiler to
move code and do other optimizations. The effect 1is that the
debugger is not able to guarantee a reasonable result for any user
command.

When a user issues a Debug command that might not have the
intended effect due to the OPTIMIZE parameter of the specific
compilation unit, the debugger prints a brief warning message and
then processes the command.

The defaults of these compiler directives are DEBUG(ON) and
OPTIMIZE(CAN_MODIFY). Thus, the usual mode of compilation permits
the user to use Debug commands with full confidence that they will
do as he expects.

3.2.4.3 Debug/RTS~-KAPSE Interface

Debug control over user program execution is accomplished by
directives to the Debugging Support Routine within the Ada Run Time
System that is controlling the execution of the user program, The
directives are divided into four distinct areas: execution control,
value manipulation, exception handling control, and history trace.

The KAPSE is the interface between DEBUG and the RTS; that is,

Debug calls the KAPSE whenever it wants to pass control to the user

program, or whenever it wants to direct the RTS to perform some

specific function. The KAPSE passes control and any information to

the RTS. When the RTS encounters an active breakpoint in the user

f program, or has completed doing the work required, it calls the
KAPSE, which returns control to the Debug.

Various pieces of information need to be passed between the RTS
and Debug, The following sections describe that information, as
well as defining what a hook is. Details of the implementation of
hooks, the procedures that do the work, and the information passed
across the KAPSE boundary are described informally.

In general, the information passed across the KAPSE is a set of
codes representing specific actions to take or indicating events
that have occurred, and an object representing a value on the target
machine. This value is either the result of a memory fetch
requested by Debug, the identity of the breakpoint encountered, or
the identity of the exception encountered.

(a) Hooks. The actual control of the user program on a
statement-by~-statement basis is accomplished via hooks in the object

21

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 861-1840




module, Hooks are special branches to the Ada Run Time System.
They are installed in the object module by the Ada Compiler under
control of the DEBUG parameter, When the parameter is ON, hooks are
installed between every statement of the compilation units affected
by the parameter. For the purposes of debugging, declaration items
are considered as statements, as are blocks, loops, and subprogram
entry and exit,

Special care is taken in the Run Time System and in the
Compiler code generator phases to assure that these calls to the Run
Time System are as small and as efficient as possible. Each hook
carries with it a unique identification number within the
compilation unit. This identification number provides an index into
a table, associated with the compilation unit, containing
information about the hook, most importantly its memory address.
Debug uses this memory address when directing the Run Time System to
activate the hook. This table 1s contructed partially by the
Compiler, and then is updated by the Linkage Editor with the actual
memory address of the hook.

There are three distinct kinds of hooks, only two of which are
generated by the compiler. These two are the normal statement hook,
and the subprogram entry/exit hook. The compiler always puts hooks
at procedure entry and exit. For this reason, the user can always
perform procedure-level debugging. In addition, the RTS is always
able to provide the user with a calling trace of his program, should
it terminate abnormally. The normal statement hook is only
installed when the compiler DEBUG parameter is ON. Otherwise they
are indistinguishable. The third hook takes the place of either of
the other two only when Debug tells the Run Time System to activate
a specific breakpoint,

(b) Execution Control. The KAPSE provides a mechanism so that when
a special character (interrupt) is typed on the user terminal, the
RTS gets an interrupt that it recognizes, 1In the presence of Debug,
the RTS transfers control to it through the KAPSE interface. When
Debug is not active, the RTS suspends the execution of the program
and returns control to its parent (normally the MCP).

The debugger can tell the RTS to start or resume program
execution, This interface also includes a specification of a new
address at which to resume execution. This is wused for the
Pgm_goto procedures.

Additional pieces of information are kept by the RTS so that it
remembers its own state. Specifically it has the following states:

1. no debugger and, therefore, no breakpoints;

2. no breakpoints activated, but there is a debugger;

3. some specific breakpoints activated;

4, single step activated, return to debugger at every

hook.

22

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (017) 081-1840

EIRES 3

~




D T - L . A e e Tnd

In addition, there are specific states for exception handling. This
state information is used to control the RTS interface with the
specific hooks in the user program. In this manner, more efficient
execution is provided for non-debug scenarios.

In the case that some breakpoints are activated, Debug asks the
RTS to modify the hook so that it behaves differently from a hook
representing a statement with no breakpoint. Thus, control only
passes to Debug when an activated breakpoint occurs in the user
program, The two types of hook always transfer control to the RTS
since the user can activate single step mode at any time. No
modification of the user program is necessary to implement single
step; only a directive to the RTS, telling it to return after every
hook.

Future APSE extensions might provide for more information
stored in the hook table. Alternative debuggers, pseudo-timers, or
environmental simulators can use this mechanism with the extra
information to provide full functional simulation of a target
environment., See Section 3.3 below.

(c) Value Manipulation. The user can specify that Debug modify as
well as print the values of program variables. Debug accomplishes
this by calling the RTS (through the KAPSE), supplying an address
and a value to be stored there or supplying a place to store the
value retrieved from the program.

-

‘ (d) Exception Handling. Debug can cause the RTS to trap specific
. exceptions, all exceptions, or only unhandled exceptions. The RTS
! raise handler does not unwind the stack until it finds a handler for
: the specific exception. (The run-time stack contains information

from which the raise handler can compute which stack frames handle
! which exceptions.) This means that the user's program context is
' saved when an unhandled exception occurs rather than having the

program unwind to top level. Control returns to Debug and the user

can then take corrective action. This exception handling mechanism
. is always used, even when the Debug is not present at the time of
P the exception., This permits the user, once his program has
terminated due to an unhandled exception, to invoke Debug, examine
his program state, and take corrective action as necessary.

BRI S

The mechanism for handling specific exceptions is as follows.
Each TRAP EXCEPTION command issued by the user causes the debugger
to look up the exception name and pass its identification to the
RTS. The RTS keeps a 1list of exceptions it needs to check for
whenever the RTS "raise” handler gets called.

(e) History Trace. The RTS maintains a history trace of the
execution of the user program, This information is available to
Debug, The information includes the full nested call chain of
procedure and function calls. Also included is a limited history of
the task scheduling and rendezvous activity as well as flow
information. This information 1is kept in a table with a limited

23

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 « (817) 081-1840




size, so that only the most recent events (with time stamps) are
recorded. See the BACKTRACE command.

3.2.4.4 Debug/Internal Data Base Interface

The Debug internal data base is an abstract type implemented as

a package. The data base keeps track of active breakpoints, the

commands associated with a breakpoint, the current scope, as well as

. states of Debug. These states include: (1) at a breakpoint; (2)
: doing single step; (3) processing stored commands.

3.2.4.5 Debug/Program Library Access Package

Debug requires access to specific information stored in the
Program Library for the executing program, The entire symbol table
for each compilation unit that makes up the executing program is
used by Debug to determine which variables the user is referring to
in a DISPLAY, or TRAP MODIFY or SET command. This symbol table Y
includes full storage allocation information for each variable, as 1
well as an enumerated type indicating the optimization 1level and é
presence of hooks in each specific compilation unit. The addresses P
of variables are necessary for the DISPLAY and SET Debug commands. b
The information concerning optimization level and presence of hooks b
is used by the debugger to warn the user if some command may not
have its intended effect.

A map of all the symbol tables of the executing program are
necessary as well, This map is created by the Link Editor. Debug
uses this to determine the new scope when the user gives a SCOPE
: ENCLOSING or SCOPE TO command.

: A table of each hook location is also created by the compiler.
! Debug uses this table, in conjunction with the map produced by the
' link editor, when directing the Run Time System to activate or
deactivate specific breakpoints.

The interface between Debug and the Program Library is a
package specification. Following are the specifications for two
specific procedures in that package.

(a) Analyze. This procedure takes a program environmment and an t
abgstract syntax form of a Diana tree for an Ada expression and
produces a completed Diana tree. The program environment is a
pointer into the Library Data Base specifying a specific point in

, the user program, The completed Diana tree is a post-semantic

! representation; it does not include code generation. This permits
the debugger to access the variables in the user program's address
space, The design of this procedure follows the design of the
semantic analysis phase of the Compiler, and specifically uses the
Lookup procedure,

24

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (617) 081-1840




PR <

{b) Cref_look. This procedure inspects the cross-reference data
base constructed by the Compiler 1in the Library. It finds the
correct variable and returns the list of points where the variable
is used in assignment context. This procedure is used to implement
the TRAP MODIFY command.

3.2.4.6 Breakpoint Command Procedures

A separate procedure exists for each option of the BREAKPOINT
command since the work they do 1is sufficiently different. Each
procedure takes three fixed arguments in addition to any it needs
for itself. These are the user specified name of the breakpoint (if
any), the list of breakpoint identifiers (if any), and an enumerated
type giving the option specified by the user (establish, remove,
suspend or restore breakpoint).

(a) Trap.stmt, This procedure takes the three standard breakpoint
arguments, Additionally it takes a list of statement identifiers.

The Trap_stmt procedure does the processing necessary to set a
breakpoint at the specified statement in the user program. It tells
the RTS which statements have traps set for them and makes the
necessary marks in the debugger Jdatabase.

(b) Trap-label. This procedure takes the three standard breakpoint
arguments. Additionally it takes a 1list of 1labels in the user
program,

The Trap_label procedure does the processing necessary to set a
breakpoint at the statement specified by each of the labels in the
user program. The labels can be qualified 1like statement
identifiers or unqualified. In the latter case, the label must be
visible in the current scope.

(c) Trap_every. This procedure takes the three standard breakpoint
arguments. Ad%itionally it takes an integer,

The Trap_every procedure does the processing necessary to
repeatedly cause a breakpoint to occur every "n" statements. The
statement interval 1is specified by the integer argument. This
integer gets saved in the Debug data base along with the breakpoint
command. The RTS is told to enter single step mode, and given the
integer. The RTS counts statement hooks, and returns to Debug when
the specified number of statements have occurred. If hooks are
turned off in some compilation units, the Trap_every procedure can
only count subprogram entry and exit as statements, since no other
hooks are present, This statement‘hook count ignores scheduling of
various tasks; that is, every nt statement/hook, regardless of
context, that is executed is counted.

25

4 e et

INTERMETRICS INCORPORATED o 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 061-1840

‘ . A -— "““"‘“_"'“'f‘";_.\.




(d) Trap-modify. This procedure takes the three standard
breakpoint arguments. Additionally it takes a list of variables.

The Trap_modify procedure does the processing to set a
breakpoint before every statement in which the specified variables
could have their value changed. These statements are the assignment '
statements, and procedure calls that have the variable as an OUT or
INOUT parameter. The procedure accesses the cross reference tables
generated by the compiler to determine this information, and sets
the necessary breakpoints by entering them in the data base and
telling the RTS to activate them. A complete variable must be
specified, except that components of record variables may be
specified. Components of arrays are specifically not permitted.

(e) Trap.exceptions. This procedure takes the three standard
breakpoint arguments, Additionally it takes a 1list of exception
names.

The Trap_exceptions procedure does the processing to cause
control to return to Debug for the specified exceptions. It does
this by telling the RTS to trap the specific exceptions, and making
any necessary marks in the data base.

(f) Trap.all. This procedure takes the three standard breakpoint F
arguments. i

The Trap _all procedure does the processing necessary to cause
control to return to Debug upon every exception in the user program.
It does this by telling the RTS to trap all exceptions and making
any necessary marks in the data base to record the state,

(g) Trap-unhandled. This procedure takes the three standard
breakpoint arguments.,

The Trap_unhandled procedure does the processing necessary to
cause control ~to return to the debugger whenever an unhandled
exception occurs in the user program, It does this by telling the
RTS to only trap unhandled exceptions, and making necessary marks in
the database to record the state.

s A 2 L0 e el AR

(h) Trap.invoke. This procedure takes the three standard
breakpoint arguments.

The Trap_call procedure does the processing necessary to cause
control to return to Debug whenever a subprogram (task, entry,
procedure and function) is entered. It does this by activating the

RTS subprogram entry trap and making any necessary marks in the
database to record the state,

26

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (617) 081-1840




B R T VR nl e Ay 5 A o e - e e e a - PR OV,

(i) Trap.return. This  procedure takes the three standard
breakpoint arguments.

The Trap_return procedure does the processing necessary to
cause control to return to Debug whenever a subprogram (task, entry,
procedure and function) is exited. It does this by activating the
RTS subprogram exit trap, and making the necessary marks in the
database to record the state of the breakpoints.

; (J) <Trap_bkpt_id. This procedure takes a 1list of breakpoint
| identifiers and an enumerated type specifying what action to take.

The Trap_bkpt_id procedure does the processing necessary to : 1
remove, suspend or restore breakpoints and their associated actions. 8
The action applies to the entire 1list of breakpoints specified by ¢
the user. Breakpoint identifiers can themselves refer to groups of
breakpoints, Thus, the user can manipulate groups of breakpoints
with single commands.

PP

3.2.4.7 Execution Control Command Procedures 1

The following procedures do the processing necessary for the
execution control commands.

: (a) Exe_set. This procedure takes a single tree representing the
assignment statement.

i The Exe_set procedure does the processing necessary to cause
the assignment to take place. First the Analyze proceduvre is called
' to correctly associate the identifiers in the tree with their
i semantically corzect entities. The Evaluate procedure is then
! called to evaluate the expression, and the address of the variable,
The results are then given to the RTS to cause the value to be put
in the correct memory address in the user program.

(b) Exe_goto_stmt. This procedure takes a statement identifier.

The Exe_goto_stmt procedure does the processing necessary to
cause the transfer of control to the specified statement in the user
program, The statement identifier is first checked to be sure that
the statement is in the currently active procedure. The statement
identifier is looked up in the program location table provided by
the compilerr and the new program location is passed to the RTS. No ‘
check is made to see if the transfer is legal (not into inactive 1
blocks etc). The user is responsible for assuring that the transfer
is meaningful,

(c) Exe_goto.label. This procedure takes a label identifier. .
The Exe_goto_label procedure is responsible for causing the

user program to resume control at the specified 1label. The
27

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE o CAMBRIDGE, MASSACHUSETTS 02138 « (817) 081-1840

. ""5"@"" {;;__ {W

B et




e -

I £ 7 1 -k

procedure checks that the label is within the currently active
procedure and then calls the RTS to set the new execution location.
No check is made to assure that the transfer is legal (into inactive
blocks, etc). The user is responsible for assuring that the
transfer is meaningful.

(d) Exe_return. This procedure takes an optional tree representing
an expression,

The Exe_return procedure does the processing necessary to cause
the subprogram enclosing the currently active breakpoint to return.
The expression is used as the return value in the case that the
current subprogram is a function. The expression is Analyzed and
then Evaluated. The result is passed to the RTS and the RTS is told
to do a "return" from the current procedure.

(e) Exe_raise. This procedure takes an argument representing the
exception to "raise".

The Exe_raise procedure does the processing necessary to raise
the specified exception in the user program. The exception
identifier is analyzed to assure it is a legal exception, and the
exception is then passed to the RTS which is told to raise it.

(f) Exe_proceed. This procedure takes an optional integer argument.

The Exe_proceed procedure does the necessary processing to
cause the normal execution of the user program to proceed. The
argument is interpreted to mean the number of times the currently
active breakpoint is to be executed before returning to Debug. The
default value is zero, meaning return to Debug the next time this
breakpoint occurs. This number is entered in the data base-and
associated with this breakpoint. It is decremented each time the
breakpoint occurs and, when it reaches =zero, control is passed to
the user interface part of Debug or to the set of commands
associated with the breakpoint.

(g) Exe_.step. This procedure takes an integer argument,

The Exe_step procedure does the processing necessary to cause
the user program to be executed one statement at a time. The
integer is interpreted as the number of statements to proceed before
returning to Debug. The count is entered in the data base, and
Debug state is set to "single step”. The RTS is told to return to
Debug at every hook. wWhen control 1is returned, the count is
decremented, and control returns to the Debug/command/processor when
the count returns to zero. 1f control returns to the Debug command
processor because of an established breakpoint or interrupt, the
count is reset to zero (the single step command is stopped).

28

¥

3

3
i




&

s

3.2.4.8 Information Command Procedures

The following procedures do the processing necessary for the
Information Commands.

(a) Info_display. This procedure takes a list of variable names
and an optional integer as arguments.

The Info_display procedure does the processing to display the
values of the specified variables in the specified base on the user
terminal (or file). The variable names are "analyzed" to determine
their correct definition in the current context,. This context is
affected by the SCOPE commands, sO the "current context™ is not
necessarily the same as the context of the "currently active
breakpoint", After analysis, the variables are passed to Evaluate
and their values fetched from the user program through a call to the
RTS.

The integer must be an integer in the range 2 through 16. 1f
no integer is supplied by the user, the variables are displayed in
their default mode (fixed, floating, integer, string, boolean,
enumerated literal, etc.) Array and record variables are displayed
in their entirety with identifying labels (subscripts, field names,
etc.). The base applies to all the variables on the list,

(b) Info_backtrace. This procedure takes an enumerated literal as
an argument,

The Info_backtrace procedure does the processing necessary to
print history trace information on the user's terminal (or file).
The enumerated literal represents the kind of backtrace information
required, Each one requires a call to the RTS to get the specific
information, which 1is then printed out. The RTS keeps the
information itself, The options are:

CHAIN -- Show the nested calling chain from program startup.
Included are the parameter names and values for the most recent
subprogram,

FLOW ~-- Show the recent flow of control (goto, if, etc). This
information is maintained by the RTS in a ring buffer. Thus only a
limited amount of history is saved. The information will be
compacted as the program runs so that the maximum amount of
information can be saved. One such compaction is to fold sequential
statements into a single information unit. This information is
gathered by the RTS's catching control at each hook and retaining
the hook's identifying number.

TASK -- Show the history of multi-tasking flow. Each time the

RTS schedules a specific task to run, it makes a note in a ring

buffer (different than for flow). The note contains a time stamp as

well, to help the user in debugging his program, Each time an

accept or entry call is made, these events also get recorded with a

time stamp, The note in the ring buffer contains sufficient
29 -

,———

S
. s e
P o N




information for Debug to provide statement identification for the
program,

ALL -- This option causes all the other backtrace options to be
executed one by one. In addition, the CHAIN option is modified so
that the full interface of every subprogram on the calling chain is 1
printed out.

(c) Info.scope. This procedure takes an enumerated literal and an
optional scope identifier,

The Info_scope procedure does the processing necessary to
change the scope in which Debug finds the definition of variables 1
and other named entities referred to by the user. The effect of the
scope command is forgotten once the user program is allowed to
proceed from a breakpoint, when a breakpoint is encountered, the
scope is set to the scope where the breakpoint has occurred.

The enumerated values permit the user to access scopes that he '3
could not name explicitly. The TO option allows the user to specify t
an arbitrary scope. The CALLER option causes the scope to return :
one level up on the dynamic calling chain, permitting the user to
look at the state of the calling subprogram. The ENCLOSING option
changes the context to the statically enclosing scope of the current
context. The RESET option returns the context to the place where
the breakpoint occurred.

(d) Info_what. This procedure takes an enumerated literal as an
argument.,

The Info_what procedure prints out information concerning the
current breakpoints, breakpoint commands and scope that Debug is
! manipulating. The enumerated literal specifies which of the options
the user has specified. The SCOPE option prints out the
identification of the current scope. The TRAP (or BREAK) option
prints out the 1list of all breakpoints, suspended or not, with
breakpoint identifications, These identifiers may be used for the
abbreviated NO, SUSPEND and RESTORE commands.

L e R T .6 RO 5

(e) Info_dump. This procedure takes an enumerated type as an
argument,

The Info_dump procedure does the processing to display all the
variables in a specific scope. Normally the command refers to the
current scope (affected by the SCOPE command). If the user
gpecifies the ALL option, all scopes that are “active" (contain
valid data) are "dumped®. This involves extensive use of the
Program Library Access Package to get the 1list of variables

? locations and names in a specific scope, and then calls to the RTS
- to get the current value of these variables. The DUMP command
¥ includes subprogram parameters as variables in this processing.
y Each scope and identifier is identified in the printout.

30

INTERMETRICS INCORPORATED « 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 681-1840




. a - . . U S

3.2.4.9 Debug Control Command Procedures

(a) Dc.save. This procedure takes a file name as an argument,

The Dc_save procedure does the processing necessary to save all
the breakpoint commands in the Debug data base in a format to be
read in by the MCP. This allows a user to accumulate a specific set
of breakpoint commands and then save them for future work. The
information is no different than that printed out by the WHAT TRAP
command, only it is guaranteed to be readable by the Debug Command
Processor as normal commands.

The name syntax for breakpoint commands is used to assure that
all breakpoints retain the same names and numbers as in the current
session,

No attempt is made to preserve either the current scope name or
the state of the user program's execution, Neither is there an
attempt to save the state of the output command's file. The only
information being saved is the set of breakpoints.

(b) Dc_brief. This procedure takes a Boolean argument.

The Dc_brief procedure does the processing to control the
messages sent to the user terminal. If the Boolean argument is
true, Debug uses shorter messages when communicating with the user.
It only affects terminal printout; file printout remains verbose.
If the argument is false, verbose mode is turned back on. The data
base has a flag that contains the state of this mode.

(c) Dc_append. This procedure takes a file name and an enumerated
literal as arguments.

The Dc_append procedure does the processing to cause a copy of
breakpoint and display output to be directed to a file. 1In the case
that the enumerated literal specifies ONLY, no output is directed to
the user terminal, except when control returns to the command level.
In that case, the user is always prompted with the breakpoint
identifier, The processing includes opening the file for append
access, and making marks in the data base referring to the file and
preventing terminal output if requested.

(d) Dc_no_append. This procedure takes no arguments.

The dc_no_append procedure does the processing to terminate
output to the file specified in a previous APPEND command. Output
to the terminal is restored. This is done by making marks in the
data base specifying the debugger status.

3.2.4.10 Utility Procedures

These utility procedures are used by several of the Debug
command procedures,

31

INTERMETRICS INCORPORATED ¢ 733 CONCORD AVENUE + CAMBRIDGE, MASSACHUSETTS 02138 « (817) 661-1840

P

[

PRUEPRAESTE RS > 1

JE .




k

S M

T

e

i YT

e

PR

e e i e
»

ot 25 AT

(a) Parse. The Parse procedure is responsible for parsing the
subset of legal Ada expressions and Ada name references that are
supported by Debug. The output is an abstract syntax tree that can,
by further analysis, be turned into a legal Diana tree,

({b) Evaluate. The Evaluate procedure is responsible for evaluating
a Diana tree that represents an expression. It is used by the
DISPLAY and SET commands to evaluate the expressions specified by
the user,

3.3 Adaptation

3.3.1 Debug Size Restrictions

Debug has no size restrictions other than those imposed by the
KAPSE., There are no parameters to alter to make it have a larger
data base, etc.

3.3.2 Debug Extensions

Debug is carefully designed to permit extensions to the set of
commands for future APSE development. It is expected that APSEs
will use the debugging facilities as a test bed for debugging
embedded software applications by writing various control scripts
and possibly extending its set of commands and control over the user
program execution. The nature of these extensions is expected to be
in the direction of environmental and functional simulation of the
target environment,

3.3.3 Run-Time System Parameters

There are two size restrictions on the functionality of the Run

Time System. Both are size restrictions on the amount of
information the Run Time System can keep during the program
execution, The first is the size of the execution trace.

Initially, the RTS can keep only the most recent 100 to 150
execution events for the BACKTRACE commands. Changing the size of
the table that holds this trace will allow larger trace of execution
to be kept by the RTS, and thus be printed out by Debug. There are
two such execution event tables : one being the task-rendezvous
table, the other being the jump~flow table, one for each task.

The second size restriction is the number of traps on
exceptions that the RTS can support at one time. The specific
exception identifiers must be kept by the Run Time System for the
exception identifiers must be kept by the Run Time System for the
sake of efficiency. Initially, the RTS can remember 100 separate
exceptions that the user has specified traps for, This size can be
altered to allow traps on more exceptions.

32

PR S

2 rdoae s




.

%1

4.0 QUALITY ASSURANCE PROVISIONS

i The provisions to assure a quality product include testing at
various levels, as well as the use of structured programming
methodology. The structured programming methodology has aready been v
employed in the design represented by this document. Unrelated |
pieces of functionality are implemented by different procedures,
whereas similar functions of different procedures have been
separated out into a single generalized procedure.

See the CPDP [TBD] for a detailed discussion of the methodology :
to be used while constructing the MAPSE. For Debug, the following !
tests will be performed.

Each procedure implementing the action of one Debug command
will be wunit tested. This involves constructing a specific
environment around the procedure to be tested, and then invoking it
with specific arguments. The actions that the procedure takes can
then be observed and compared with the expected actions.

The Debugger Support Routine that is a part of the Ada Run Time
System will also be unit tested. This unit testing will be done
without wusing the KAPSE to transmit codes to it. Rather, the
procedures will be called directly from the test driver, and the
results observed and compared with expected results.

RS TE ST

The Debug/KAPSE-RTS interface will be functionally tested,
This means that the debugger will call the KAPSE to manipulate the
Debugger Support Routine, and the effects observed. A unit test is
not necessary, since KAPSE testing should be complete.

The Debug Command Processor will be functionally tested. Unit
tests are not necessary since the MCP will already have been tested.
Only the extensions to the MCP need testing.

*

This completes the testing requirements for Debug. The tests
will be repeated on both MAPSE configurations, VM370 and
Perkin-Elmer 8/32.

33

INTERMETRICS INCORPORATED » 733 CONCORD AVENUE « CAMBRIDGE, MASSACHUSETTS 02138 « (817) 681-1840




L3

TR VTR T RN i

MISSION
of
Rome Awr Development Center

RANC plans and executes nesearch, development, test and
selected acquisition programs in suppont of Command, Control
Communications and Intelligence (C31) activities. Technical
and engineerning suppont within areas of technical competence '
48 provided to ESD Program Offices (P0s) and othen ESD %
elements. The principal technical mission areas are "
communications, electromagnetic guidance and control, sun~ 0,
vedllance of ground and aerospace objects, intelligence data ¢
collection and handling, information system technology,
4Lonosphernic propagation, solid state sclences, microwave
physics and electronic neliability, maintainability and
compatibility.

:
2
3

& 23 22 23 22 23 223 22 23 2 3 23 2323 1)







